An anonymous, electronic questionnaire was created using the online Select Survey tool. The 31-point questionnaire consisted of sections investigating: participant demographics, safeguarding training, experience of child dental neglect in practice and barriers to reporting concerns. The questionnaire was based on previously published surveys.12 A combination of quantitative and qualitative data collection was used to investigate the GPs' awareness and experience of child dental health and neglect. Ethical approval was gained from the University of Manchester Research Ethics Committee and consent to participate was obtained from participants.
Download Bridge Base Online Version 5221
DOWNLOAD: https://byltly.com/2vCL1y
Mangroves are woody wetland communities that grow in the intertidal zones of tropical and subtropical coasts and are among the most productive ecosystems in the world. Mangroves provide important support for coastal ecological and environmental protection, social development, and economic progress. Those found in Southeast Asia are a key portion of global mangroves. The study of spatiotemporal changes of mangrove forests and their driving factors in Southeast Asia can provide a theoretical basis and supportive evidence for the scientific protection and effective management of mangrove ecosystems. Based on the cloud computing platform of the Google Earth Engine, Landsat satellite data, and mangrove distribution data sets, combined with the Theil-Sen median trend analysis and Mann-Kendall test methods, this study analyzed the spatial variation trend of mangroves in Southeast Asia from 1990 to 2020. A factor detector and an interaction detector in the geographic detector method were used to quantitatively analyze the driving factors. First, the results showed that, from 1990 to 2020, the overall mangrove area in Southeast Asia showed a downward trend, with an area reduction of 1,467,883.1 hm2 and an annual average loss rate of 1.1%. According to the statistics of the mangrove area change rate based on cellular network data, the total loss of mangrove area was as high as 40.11%. Of the total mangrove area, the regions with a change rate between -99% and -50% accounted for 28.57%, regions with a change rate between -49% and -5% accounted for 8.79%, and regions with a change rate between -4% and -1% accounted for only 13.95%. Regions with a change rate between 1% and 99% accounted for 8.18%. Only 0.4% of the mangrove area remained unchanged. The regions with increased mangrove area were primarily distributed in the Philippines, western and eastern Indonesia, and northern Vietnam. Second, the improvement and degradation of mangroves in Southeast Asia showed a concomitant distribution from 1990 to 2020. The degradation area of mangroves (79.25%) was much larger than the improvement area (20.32%) in Southeast Asia. Specifically, the significantly degraded areas accounted for 31.58%, the slightly degraded areas accounted for 47.67%, the significantly improved areas accounted for 4.75%, the slightly improved areas accounted for 15.57%, and only 0.42% of the area remained stable. Finally, the increase in aquaculture pond area was the main driving factor for mangrove area decline, with q values above 30%. Additionally, the shortest distance of mangroves from roads and population changes also had significant effects on the decline of mangrove area. The average annual temperature, precipitation, and topography had a relatively low degree of influence on mangrove changes. The results of the interaction detector indicated that all factors showed interaction enhancement, and the interaction between the culture tank and other factors was significantly stronger than that between other factors. The single factors with relatively weak driving force, such as average annual rainfall, temperature, and topography, had a significantly stronger influence on the interaction with other factors and showed a nonlinear enhancement effect. 2ff7e9595c
Comments